
Bluetooth Hacking revisited

+

Kevin Finistere & Thierry
Zoller

23C3 - 2006

Bluetooth – Please just turn it off

Turn off your BT please,

 ,no really.

Yeah

The Goal of this Talk ?

 The Goal of this talk is not to:
 Build myths
 Show off – and not show how

 The Goal of this talk is to :
 Raise awareness
 Make risks (more) transparent
 Paradigm Shift – Bluetooth is not only for toys
 Show cool stuff…

What are we talking about today ?

 [0x00] – Introduction : What is Bluetooth ?
 Sorry this is required. Crash course..

 [0x01] – Get ready to rumble : Extending the Range
 Extending the range of Bluetooth devices
 Building automated reconnaissance and attack devices
 Bluetooth War driving (GPS, 360° Camera)

 [0x02] – Implementation issues : Bypassing Security
 Attacking drivers, Attacking applications
 Owning Bluetooth VNC style
 Attacking Internal Networks and pivoting
 Bluetooth Pin to Bluetooth Passkey

 [0x03] – Protocol/Specification issues : Ceci n’est pas une pipe
 Cracking the Pin and the Link-key (BTCrack)

 Key management, 8 bit Encryption, Collisions
 Tracking the un-trackeable
 Anti-Brute-forcing
 Random Number generators from hell

[0x00] Introduction

 Bluetooth - a few tidbits:
 Operates on the non-regulated ISM band : 2,4Ghz
 In general 79 Channels (Except France, Spain)
 Frequency Hopping (3200/sec, 1600/sec)
 Complete Framework with profiles and layers of protocols
 1 Billionth BT device sold in November 2006 (source SIG)
 Goals : Least cost cable replacement, low power usage

[0x00] Introduction

 The foundation – Protocol Stack

Hardware

Software

Redfang – read_remote_name()

L2ping

[0x00] Introduction

 “Typical” Bluetooth Scenario

Inquiry
Inquiry response

Paging (FHS)
Link establishment

Discovers
Profiles

Bluetooth
Access Point

[0x00] Introduction

 Inquiry - First Contact

 Predefined Hopping sequence
 FHS same for all devices
 Pass Paging parameters during Inquiry stage

[0x00] Introduction

 Paging - Frequency Hopping Synchronization
 Slaves always sync to the Master
 Paging initialisation :

 Slaves hop 1 Channel/sec
 Master hops 3200 times/sec

 Paging
 Both hop 1600 times/sec
 Piconet agrees to a Sequence based on parts

of the BD_ADDR and Clock-offset of the master.
(Nice fingerprint by the way)

 FH is the reason you can not easily sniff BT traffic. You have to sync to the
Master (or use a Spectral Analyzer and reconstruct afterwards – Good luck)

[0x00] Introduction

 The Bluetooth Profiles
 Represent a group and defines mandatory options
 Prevent compatibility issues, modular approach to BT extensions
 Vertical representation of BT layer usage, handled through SDP

Object Push Profile

[0x00] Introduction

 Different Bluetooth modes
 Discoverable modes

 Discoverable :
Sends inquiry responses to all inquiries.

 Limited discoverable:
Visible for a certain period of time (Implementation bug: Sony Ericsson T60..)

 Non-Discoverable:
Never answers an inquiry scan (in theory)

 Pairing modes :
 Non-pairable mode :

Rejects every pairing request (LMP_not_accepted) (Implementation bug: Plantronic
Headset..)

 Pairable mode :
Will pair up-on request

[0x01] Get ready to rumble

 Extending the Range

[0x01] Get ready to rumble

 Long Distance - Datasets
 Antrum Lake, water reflection

guarantees longer ranges.
 788 Meters
 An old Man stole my phone
 during this test! I tracked
 him with the yagi.

[0x01] Get ready to rumble

 Optimizing for Penetration (1)
 Integrated Linksys Dongle
 Integrated USB Cable
 Metal Parabola
 10 * Zoom
 Laser (to be done)

 Experiment : Went through a building found the device on
the other side IN another building.

[0x01] Get ready to rumble

 Optimizing for Penetration (2)
 Bundling (Parabola)
 Higher penetration through walls
 Glass is your friend
 On board embedded device. (NSLU2)
 Autonomous scan and attack toolkit

 automatically scans
 may attack devices
 saves all the results

[0x01] Get ready to rumble

 PerimeterWatch – Bluetooth Wardriving
 Perl Script by KF
 Searches Bluetooth Devices
 Takes 360° pictures
 GPS coordinates

[0x02] Implementation bugs

 Implementation Bugs – Bypassing security

[0x02] Implementation bugs

 Menu du Jour :
 Eavesdropping on Laptops/Desktops
 Remotely controlling workstations
 Car Whisperer NG
 Owning internal Networks over Bluetooth
 Linkkey theft and abuse
 Widcomm Overflows

(Broadcom merger leaves lots of vuln users that can not patch) BTW
3.0.1.905 (../ attacks) and up to BTW 1.4.2.10 has overflows

[0x02] Implementation bugs

 Bluetooth PIN is really a Bluetooth Passkey
 Did you know ? A Bluetooth “Pin” can be more than digits…
 Not aware of any implementation, all use just digits
 Uses UTF8
 Max 16, UTF8 char may take some off

 Example :

 It’s like implementing NTLM with digits only….
 BTCrack would a lot more time if this would be “correctly” implemented

0xC3 0x84 0x72 0x6c 0x69 0x63 0x68Ärlich

0x30 0x31 0x032 0x330123

BT handles User enters

[0x02] Implementation bugs

 CarWhisperer – Martin Herfurt
 Listen and Record Conversations
 Not that new, but what’s new :

 Works against Workstations
Example : Widcomm < BTW 4.0.1.1500 (No Pincode)

 Kevin did a real-time patch for it
 Remove the Class ID check

 Root Cause :
Paring mode, discoverable, hard coded Pin.

[0x02] Implementation bugs

 HidAttack - Owning Bluetooth VNC Style
 HID = Human Interface Device
 Requires 2 HID (PSM) endpoints to act
 as server
 2 implementations :

 Keyboard connects to the HID server
 HID server connects to the Keyboard

 You can control the Mouse and Keyboard HID just as you were in
front of the PC.

 Discovered by Collin Mulliner , fixed in hidd Bluez <2.25, Widcomm,
Toshiba not really tested. Yours?

 Code release today : www.mulliner.org/bluetooth/hidattack01.tar.gz
 Thanks Collin !

http://www.mulliner.org/bluetooth/hidattack01.tar.gz

[0x02] Implementation bugs

 Demo - Owning internal networks
 Apple

 OSX 10.3 Tiger
 OSX 10.4 Jaguar

Vanilla, delayed release
 Windows

 Widcomm, Toshiba,
Bluesoil, others ?

 Pocket PC

 Kevin: Apple asked me to not tell 10.4 was shipping vulnerable
 OSX 10.3.9 patched, OSX 10.4 shipped vulnerable patched a month

after OSX 10.3.9

[0x02] Implementation bugs

 Demo – Remote Root over BT
 Vulnerability shown :

Directory Traversal in un-authenticated
Obexserver (Patched)

 Cause :
User input validated client-side (except btftp)

 ObexFTP server directory traversal exploit & malicious InputManager & local
root exploit = remote login tty over rfcomm = 0WNAGE

 Was possible on Windows and Pocket PC and everything that has Toshiba or
Broadcom & Widcomm (estimate 90%), and most probably others too. But we
choose a MAC, because…we can.

 Points are :
- Macs are NOT invulnerable (far from that) - You can own internal networks
over Bluetooth

[0x02] Implementation bugs

 Windows Widcomm - Buffer overflows

[0x02] Implementation bugs

 Windows Widcomm - Buffer overflows

 Vulnerable versions known to us :
 Widcomm Stack up to 3.x is vuln
 Widcomm BTStackServer 1.4.2 .10
 Widcomm BTStackServer 1.3.2 .7
 Widcomm Bluetooth Communication Software 1.4.1 .03
 HP IPAQ 2215
 HP IPAQ 5450

[0x03] Protocol issues

They are just
implementation

Bugs*

*This is supposed to be a joke

[0x03] Protocol issues

 Menu du Jour :
 Why the Pin is not that important
 Unit Keys
 How to find non discoverable devices
 Random Number generators that may be from Hell
 Link Keys

 Reconstructing them
 Abusing them
 Re-force Pairing, Corruption

 Denial of Service

[0x03] Protocol issues

 The PIN is not really that useful
 The link key is !
 Here’s why :

 Pairing mode required for PIN
 The LK is enough to authenticate
 Encryption (E0) calculated from

the LK
 We can authenticate against both

sides with the same key

 Protocol 1.2 Authentication :

[0x03] Protocol issues

 Unit keys
 Generated by the device when starting up
 Based on a PRNG that may come from hell
 Permanently saved and cannot be changed
 Only has one key

 Problem :

 The SIG clearly does not recommend it’s use.

A B

Step1

A C

Step2

[0x03] Protocol issues

 How to find nondiscoverable devices passively

 From the man himself: Joshua Wright
 We knew read_remote_name(), now l2ping.
 Target : BD_Addr : 48-bit

4. Sniff on a preset channel and wait for devices to hop by , capture
the Bluetooth Preamble, extract the cannel access code (which
is based on 24 bits of the BD_addr)

5. Extract Error Correction field (baseband header – CRC 10bit
field)

6. Assume the first 8 bits 00
7. Brute force the remaining: 8bits

00:11:9F:C5:F1:AE

[0x03] Specification issues

 Random Number Generators from Hell

 Specification is not very clear about what to achieve or how to achieve
it

 The specification reads :

Each device has a pseudo-random number generator. Pseudo-random
numbers are used for many purposes within the security functions − for
instance, for the challenge-response scheme, for generating authentication and
encryption keys, etc.

Within this specification, the requirements placed on the random
numbers used are non-repeating and randomly generated

For example, a non-repeating value could be the output of a counter that
is unlikely to repeat during the lifetime of the authentication key, or a
date/time stamp.

[0x03] Specification issues

 Random Number Generators from Hell

 Remember the Clock inside each Device ?
 Remember that we can get the clock-offset with an simple non-authenticated

inquiry ?
 RND do not look very random, had no time left to investigate fully, looks

horrible.

 They don’t trust it themselves :
The reason for using the output of and not directly
choosing a random number as the key*, is to avoid
possible problems with degraded randomness due
to a poor implementation of the random number
generator within the device.

*What a great idea that would have been…

[0x03] Protocol issues

 Introducing BTCrack
 First presented at Hack.lu 2006
 Released for 23C3
 Cracks PIN and Link key
 Requires values from a Pairing sniff
 Imports CVS Data

Available for download here now:
http://www.nruns.com/security_tools.php

http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php

[0x03] Protocol issues

 History
 Ollie Whitehouse - 2003

 Presents weaknesses of the pairing process and how it may be used
crack the PIN

 Shaked and Wool - 2005
 Implemented and optimised the attack
 Found ways to re-initiate pairing

 Thierry Zoller – 2006
 Win32 implementation, first public release
 Tremendous help from somebody that will recognize himself

[0x03] Protocol issues

 Speed - Dual-Core P4-2GHZ

 BTcrack v0.3 (Hack.lu)
 22.000 keys per second

 BTcrack v0.5
 47.000 keys per second

 BTcrack v1.0
 Thanks to Eric Sesterhenn

 Optimised for caching,
cleaning code, static funcs,
removing Junk

 ICC
 185.000 keys per second

Results :
• 4 digit pin : 0.035 seconds

• 5 digit pin : 0.108 seconds

• 6 digit pin : 4.312 seconds

• 9 digit pin : 1318 seconds

[0x03] Protocol issues

 BT Crack – Behind the scenes (1)

Step1
Generates (RAND)
K = E22(RAND, PIN, PIN_LEN)

Device A Device B

Step1
K = E22(RAND, PIN, PIN_LEN)

Rand

Step2
Generates (RANDA)
CA = RANDA xor K

Step2
Generates (RANDB)
CB = RANDB xor K

CA

CB

Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step4
SRESA =
E1(CH_RANDA,ADDRB,LKAB)

Step4
SRESB =
E1(CH_RANDA,ADDRB,LKAB)

CH_RANDA

SRESB
Step5
SRESA = SRESB

E22 = Connection key
E21 = Device key

[0x03] Protocol issues

 BT Crack – Behind the scenes
Pin =-1;
Do
{

PIN++;
CR_K=E22(RAND, PIN, length(PIN));
CR_RANDA = CA xor CR_K;
CR_RANDB = CB xor CR_K;
CR_LKA = E21 (CR_RANDA, ADDRA);
CR_LKB = E21 (CR_RANDB, ADDRB);
CR_LKAB = CR_LKA xor CR_LKB;
CR_SRES = (CH_RAND, ADDRB, CR_LKAB);

}
 while (CR_SRES == SRES)

 Right : Shaked and Wool logic
 Top : Pseudo code by Tomasz Rybicki
 Hackin9 04/2005

[0x03] Protocol issues

 BT Crack – Demo

[0x03] Protocol issues

 Link keys – What can I do with them ?
 Authenticated to both devices Master & Slave with the same link key
 Dump them from any Linux, Mac, Windows machine
 Create a encrypted hidden stealth channel, plant the linkkey
 You can decrypt encrypted traffic with the linkkey

 How to force repairing ?
 Shaked and Wool proposed:

 Injection of LMP_Not_Accepted spoofing the Master
 Before the master sends Au_rand, inject In_rand to the slave
 Before the master sends Au_rand, inject random SRES messages

 We propose :
 Use bdaddr to change the Bd_Addr to a member, connect to the master

with a unknown linkkey.

[0x04] Kick-Out

 Sooooo now we have :
 A quick and reliable way to get the BD_ADDR
 A way to crack the Pin and the keys

 What's left ?
 The sniffer. It costs around 13.000$, you can get it on eBay

sometimes for the 1/10 of the amount.
 Assignment : Go and make one for everybody.

[0x04] Kick-Out

 Things to Remember :
 Bluetooth might be a risk for your Company

 Risk assessment is rather complex
 Don’t accept every file you are being send, just click NO.
 Disable Bluetooth if not required
 Pair in “secure” places (SIG Recommendations)
 Don’t use Unit Keys
 Hold your Bluetooth vendor accountable for vulnerabilities
 Delete your pairings
 Use BT 2.0 and “Simple Paring”

