runs -

professionals ® @ @

Kevin Finistere & Thierry
Zoller

23C3 - 2006

Bluetooth — Please just turn it off

Turn off your BT please,

N0 really.

The Goal of this Talk ?

= The Goal of this talk is not to:

= Build myths
= Show off — and not show how

= The Goal of this talk is to :

* Raise awareness

= Make risks (more) transparent

= Paradigm Shift — Bluetooth is not only for toys
= Show cool stuff...

What are we talking about today ?

[0x00] — Introduction : What is Bluetooth ?

= Sorry this is required. Crash course..

[0x01] — Get ready to rumble : Extending the Range
* Extending the range of Bluetooth devices
= Building automated reconnaissance and attack devices
* Bluetooth War driving (GPS, 360° Camera)

[0x02] — Implementation issues : Bypassing Security
= Attacking drivers, Attacking applications
* Owning Bluetooth VNC style
= Attacking Internal Networks and pivoting
= Bluetooth Pin to Bluetooth Passkey

EVERYBODY PANIC!!!

¥ ¢

[0x03] — Protocol/Specification issues : Ceci n’est pas une pipe

= Cracking the Pin and the Link-key (BTCrack)
* Key management, 8 bit Encryption, Collisions
* Tracking the un-trackeable
* Anti-Brute-forcing
* Random Number generators from hell

[0x00] Introduction

= Bluetooth - a few tidbits:

= Qperates on the non-regulated ISM band : 2,4Ghz

= |n general 79 Channels (Except France, Spain)

" Frequency Hopping (3200/sec, 1600/sec)

= Complete Framework with profiles and layers of protocols
= 1 Billionth BT device sold in November 2006 (source SIG)
= (oals : Least cost cable replacement, low power usage

[0x00] Introduction

= The foundation — Protocol Stack

vCard/
vCalendar WAE T
[| SDP TCS
Commands
OBEX WAP
- l Audio
UDP | TCP
IP
PPP
N
RFCOMM ‘
L2ping L2CAP
HCI
Redfang — read_remote _name() LMP

Baseband

) \

Software

>

> Hardware

[0x00] Introduction

= “Typical” Bluetooth Scenario

Discovers
Profiles
Card/
vgalzgdar WAE AT
| | Commands sbP | TS
DOBEX WAP A

; [A Audio
UDP | TCP

Bluetooth
Access Point
PP
RFCOMM ‘
1&
L2CAP
HCI #
Link establishment < | LMP
Paging (FHS) < S 1 a

Inquiry response
Inquiry <

v

[0x00] Introduction

= |nquiry - First Contact

* Predefined Hopping sequence
*= FHS same for all devices
= Pass Paging parameters during Inquiry stage

[0x00] Introduction

= Paging - Frequency Hopping Synchronization
= Slaves always sync to the Master
= Paging initialisation :
= Slaves hop 1 Channel/sec
= Master hops 3200 times/sec
= Paging
= Both hop 1600 times/sec

= Piconet agrees to a Sequence based on parts
of the BD_ADDR and Clock-offset of the master.
(Nice fingerprint by the way)

= FH is the reason you can not easily sniff BT traffic. You have to sync to the
Master (or use a Spectral Analyzer and reconstruct afterwards — Good luck)

[0x00] Introduction

= The Bluetooth Profiles

= Represent a group and defines mandatory options
= Prevent compatibility issues, modular approach to BT extensions
= Vertical representation of BT layer usage, handled through SDP

Service Name: OBEX Object Push
Service RecHandle: 0x10001
.. et FLe D
OBEX "OBEX Object Push" (0x1105)

Protocol Descripter List:

[["L2CAP" (DxD1D0)
RFCOVM shP TCS Binary "RFCOMM" (Dx0003)
e Channel: 9

"DBEX" (Dx000E)
L2CAP Language Base Attr List:

HOl code_T50639: Ox656e
encoding: Ox6a
LVF base offset: Ox100
Profile Descriptor List:
Base Band "0BEX Object Push® (©x1105)
Version: 0x0100

Object Push Profile

[0x00] Introduction

= Different Bluetooth modes

= Discoverable modes

= Discoverable :
Sends inquiry responses to all inquiries.
= Limited discoverable:
Visible for a certain period of time (Implementation bug: Sony Ericsson T60..)

= Non-Discoverable:
Never answers an inquiry scan (in theory)

= Pairing modes :

*= Non-pairable mode :
Rejects every pairing request (LMP_not_accepted) (Implementation bug: Plantronic
Headset..)

= Pairable mode :
Will pair up-on request

[0x01] Get ready to rumble

= Extending the Range

[0x01] Get ready to rumble

= Long Distance - Datasets

= Antrum Lake, water reflection
guarantees longer ranges.

= 788 Meters

= An old Man stole my phone
during this test! | tracked
him with the yagi.

[0x01] Get ready to rumble

= Optimizing for Penetration (1)
= |ntegrated Linksys Dongle

" Integrated USB Cable Biuetooth Signal wavelength 12,5 cm
= Metal Parabola
= 10 * Zoom

= Laser (to be done)

= Experiment : Went through a building found the device on
the other side IN another building.

[0x01] Get ready to rumble

= Optimizing for Penetration (2)
Bundling (Parabola)
Higher penetration through walls
Glass is your friend
On board embedded device. (NSLU2)
Autonomous scan and attack toolkit

= automatically scans

" may attack devices

= saves all the results

[0x01] Get ready to rumble

= PerimeterWatch — Bluetooth Wardriving
= Perl Script by KF
= Searches Bluetooth Devices
= Takes 360° pictures
= GPS coordinates

[0x02] Implementation bugs

= Implementation Bugs — Bypassing security

[0x02] Implementation bugs

= Menu du Jour
= Eavesdropping on Laptops/Desktops
= Remotely controlling workstations
= Car Whisperer NG
= Owning internal Networks over Bluetooth
= Linkkey theft and abuse

= Widcomm Overflows
(Broadcom merger leaves lots of vuln users that can not patch) BTW
3.0.1.905 (../ attacks) and up to BTW 1.4.2.10 has overflows

[0x02] Implementation bugs

= Bluetooth PIN is really a Bluetooth Passkey
= Did you know ? A Bluetooth “Pin” can be more than digits...
= Not aware of any implementation, all use just digits
= Uses UTF8
= Max 16, UTF8 char may take some off

= Example :
User enters BT handles
0123 0x30 0x31 0x032 0x33
Arlich OxC3 0x84 0x72 0x6¢ 0x69 0x63 0x68

= It's like implementing NTLM with digits only....
= BTCrack would a lot more time if this would be “correctly” implemented

[0x02] Implementation bugs

= CarWhisperer — Martin Herfurt

= Listen and Record Conversations
= Not that new, but what’s new :
= Works against Workstations

Example : Widcomm < BTW 4.0.1.1500 (No Pincode)

= Kevin did a real-time patch for it
= Remove the Class ID check
= Root Cause :

Paring mode, discoverable, hard coded Pin.

SWITCH: for ($bdaddr) {

0002 EES && do { Fpin="5475"
f00:0E:9F/ && do { $pin="1234"
fO00:80:37f &8 do{ $piﬂ:“8?6’1 !
f00:0A: 94 && do { $pin="1234"
f00:0C: 84/ && do { Fpin="1234",

last)t # Mokia
Clast)k # Audi UHY
Clasth # O'Meill
Clast} # Cellink

last}: # Eazix

Fpin="0000" # 0000 is the default passkey in many cases

i

[0x02] Implementation bugs

= HidAttack - Owning Bluetooth VNC Style

HID = Human Interface Device
Requires 2 HID (PSM) endpoints to act
as server
2 implementations :
= Keyboard connects to the HID server
= HID server connects to the Keyboard

You can control the Mouse and Keyboard HID just as you were in
front of the PC.

Discovered by Collin Mulliner , fixed in hidd Bluez <2.25, Widcomm,
Toshiba not really tested. Yours?

Code release today : www.mulliner.org/bluetooth/hidattack01.tar.gz
Thanks Collin !

http://www.mulliner.org/bluetooth/hidattack01.tar.gz

[0x02] Implementation bugs

= Demo - Owning internal networks
= Apple
= OSX 10.3 Tiger

= OSX 10.4 Jaguar
Vanilla, delayed release

= Windows

= \Widcomm, Toshiba,
Bluesoil, others ?

= Pocket PC

= Kevin: Apple asked me to not tell 10.4 was shipping vulnerable

= OSX 10.3.9 patched, OSX 10.4 shipped vulnerable patched a month
after OSX 10.3.9

[0x02] Implementation bugs

= Demo — Remote Root over BT

Vulnerability shown :
_Directory Traversal__in un-authenticated
Obexserver (Patched)

Cause :
User input validated client-side (except btftp)

ObexFTP server directory traversal exploit & malicious InputManager & local
root exploit = remote login tty over rfcomm = OWNAGE

Was possible on Windows and Pocket PC and everything that has Toshiba or
Broadcom & Widcomm (estimate 90%), and most probably others too. But we
choose a MAC, because...we can.

Points are :
- Macs are NOT invulnerable (far from that) - You can own internal networks
over Bluetooth

0x02] Implementation bugs

= Windows Widcomm - Buffer overflows

and needs to cloze. We are sorry for the inconvenience.

")]
l Message from THREAT to LOCALHOST on 11/8/2005 12:07:05 AM Bluetooth Stack COM Server has encountered a problem

All vour bluetooth are belong ko us!

If you were in the middle of something, the infarmation you were working on
might be lozt,

Please tell Microsoft about this problem.

Wwie have created an emor report that pou can zend to vz, We will treat
thiz repart az confidential and anonymaous.

To see what data this eror report containg, click here.

Send Emor Report | Don't Send |

&
-
n

PAM.reg

[0x02] Implementation bugs

= Windows Widcomm - Buffer overflows

= Vulnerable versions known to us :
= Widcomm Stack up to 3.x is vuln
= Widcomm BTStackServer 1.4.2 .10
Widcomm BTStackServer 1.3.2 .7
Widcomm Bluetooth Communication Software 1.4.1 .03
HP IPAQ 2215

HP |PAQ 5450 EVERYBODY PANIC!!

=))
¥ ¢

[0x03] Protocol issues

They are just
implementation
Bugs™®

*This is supposed to be a joke

[0x03] Protocol issues

= Menu du Jour :

= Why the Pin is not that important
= Unit Keys
= How to find non discoverable devices
= Random Number generators that may be from Hell
= Link Keys
= Reconstructing them
= Abusing them
= Re-force Pairing, Corruption
= Denial of Service

[0x03] Protocol issues

= The PIN is not really that useful
= The link key is !

Here's why :
= Pairing mode required for PIN
= The LK is enough to authenticate
= Encryption (EO) calculated from
the LK

= We can authenticate against both
sides with the same key

Protocol 1.2 Authentication :

N

< authenticated

A J

authentication
failed J

Authentication
start

link

D

'_j_/

5

already?

no
X key yes

Initiate
pairing?

yes

Imp_pairing

ok

available?
no

fail |

Imp_authentication

ok

Y

| authentication ok |

[0x03] Protocol issues

- Unlt keys

Generated by the device when starting up
Based on a PRNG that may come from hell
Permanently saved and cannot be changed
Only has one key

* Problem :

O — O Step1
A / B

@ — @ Step2
A C

The SIG clearly does not recommend it's use.

[0x03] Protocol issues

= How to find nondiscoverable devices passively

= From the man himself: Joshua Wright

= We knew read_remote_name(), now I2ping.

= Target: BD_Addr ;. 48-bit
00:11:9F:C5:F1:AE

4. Sniff on a preset channel and wait for devices to hop by , capture
the Bluetooth Preamble, extract the cannel access code (which
is based on 24 bits of the BD_addr)

5. Extract Error Correction field (baseband header — CRC 10bit
field)

6. Assume the first 8 bits 00
/. Brute force the remaining: 8bits

[0x03] Specification issues

= Random Number Generators .__ ..,

= Specification is not very clear about what to achieve or how to achieve
it
= The specification reads :

Within this specification, the requirements placed on the random
numbers used are non-repeating and randomly generated

For example, a non-repeating value could be the output of a counter that

is unlikely to repeat during the lifetime of the authentication key, or a
date/time stamp.

[0x03] Specification issues

Random Number Generators

= Remember the Clock inside each Device ?

from Hell

= Remember that we can get the clock-offset with an simple non-authenticated

inquiry ?

= RND do not look very random, had no time left to investigate fully, looks

horrible.

= They don't trust it themselves :

The reason for using the output of and not directly
choosing a random number as the key*, is to avoid
possible problems with degraded randomness due
to a poor implementation of the random number
generator within the device.

*What a great idea that would have been...

K

masrer

= E,,(RANDI, RAND2, 16).

[0x03] Protocol issues

= |ntroducing BTCrack

= First presented at Hack.lu 2006 T
" Released for 23C3 mE
= Cracks PIN and Link key

= Requires values from a Pairing sniff === —
" Imports CVS Data | —

EEEEEE

EEEEE

Available for download here now:
http://www.nruns.com/security tools.php

http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php

[0x03] Protocol issues

= History

= Ollie Whitehouse - 2003

" Presents weaknesses of the pairing process and how it may be used
crack the PIN

= Shaked and Wool - 2005
* |Implemented and optimised the attack
= Found ways to re-initiate pairing

= Thierry Zoller — 2006
= Win32 implementation, first public release
= Tremendous help from somebody that will recognize himself

[0x03] Protocol issues

= Speed - Dual-Core P4-2GHZ

= BTcrack v0.3 (Hack.lu)
= 22.000 keys per second

= BTcrack v0.5
= 47.000 keys per second

= BTcrack v1.0
= Thanks to Eric Sesterhenn

= Optimised for caching,
cleaning code, static funcs,
removing Junk

= |ICC
= 185.000 keys per second

[0x03] Protocol issues

= BT Crack — Behind the scenes (1)

Device A

Stepl

Generates (RAND) Rand

K = E22(RAND, PIN, PIN_LEN)
Step2 CA

Generates (RANDA) CB
CA = RANDA xor K <

Step3

RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Stepd CH_RANDA

SRESA =

E1(CH_RANDA,ADDRB,LKAB) <

Steps
SRESA = SRESB

SRESB

E22 = Connection key
E21 = Device key

Device B

Stepl
K = E22(RAND, PIN, PIN_LEN)

Step2
Generates (RANDB)
CB = RANDB xor K

Step3

RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step4
SRESB =
E1(CH_RANDA,ADDRB,LKAB)

[0x03] Protocol issues

BT Crack — Behind the scenes

Pin
Do

{

}

:—1;

PIN++;
CR_K=E22

CR_RANDA
CR_RANDB

CR_LKA
CR_LKB

CR_LKAB

CR_SRES

while (CR

(RAND, PIN, length(PIN));

= CA xor CR K;
= CB xor CR K;
E21 (CR_RANDA, ADDRA);
E21 (CR_RANDB, ADDRB) ;

CR LKA xor CR_LKB;

= (CH_RAND, ADDRB, CR _LKAB);

SRES == SRES)

Right : Shaked and Wool logic
Top : Pseudo code by Tomasz Rybicki
Hackin9 04/2005

PIN iz holds
the comect
value of PIN
uszsd

PN =0

v

Calculate &
hypothesis for
K

nit
i
Decode
LE_RAND , &
LK_RAND
¥
Calculate a
hypothesis for
K.

1
Calculate
SRES out of
AU_RAMND

@ NO

Calculate
SRES out of
AL_RAND

MO

Try a
consecutive
PN

&

[0x03] Protocol issues

= BT Crack — Demo

[0x03] Protocol issues

= Link keys — What can | do with them ?
= Authenticated to both devices Master & Slave with the same link key
* Dump them from any Linux, Mac, Windows machine
= Create a encrypted hidden stealth channel, plant the linkkey
" You can decrypt encrypted traffic with the linkkey

= How to force repairing ?

= Shaked and Wool proposed:

= |njection of LMP_Not Accepted spoofing the Master

= Before the master sends Au_rand, inject In_rand to the slave

= Before the master sends Au_rand, inject random SRES messages
= We propose :

= Use bdaddr to change the Bd_Addr to a member, connect to the master
with a unknown linkkey.

[0x04] Kick-Out

= S00000 how we have :
= A quick and reliable way to get the BD ADDR
= A way to crack the Pin and the keys

= What's left ?

= The sniffer. It costs around 13.000%, you can get it on eBay
sometimes for the 1/10 of the amount.

= Assignment : Go and make one for everybody.

[0x04] Kick-Out

= Things to Remember :
= Bluetooth might be a risk for your Company
= Risk assessment is rather complex
= Don’t accept every file you are being send, just click NO.
= Disable Bluetooth if not required
= Pair in “secure” places (SIG Recommendations)
= Don’t use Unit Keys
= Hold your Bluetooth vendor accountable for vulnerabilities
= Delete your pairings
= Use BT 2.0 and “Simple Paring”

